Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Viruses ; 16(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543745

RESUMO

Hepatitis D virus (HDV) infection represents the most severe form of chronic viral hepatitis. We have shown that the delivery of HDV replication-competent genomes to the hepatocytes using adeno-associated virus (AAV-HDV) as gene delivery vehicles offers a unique platform to investigate the molecular aspects of HDV and associated liver damage. For the purpose of this study, we generated HDV genomes modified by site-directed mutagenesis aimed to (i) prevent some post-translational modifications of HDV antigens (HDAgs) such as large-HDAg (L-HDAg) isoprenylation or short-HDAg (S-HDAg) phosphorylation; (ii) alter the localization of HDAgs within the subcellular compartments; and (iii) inhibit the right conformation of the delta ribozyme. First, the different HDV mutants were tested in vitro using plasmid-transfected Huh-7 cells and then in vivo in C57BL/6 mice using AAV vectors. We found that Ser177 phosphorylation and ribozymal activity are essential for HDV replication and HDAg expression. Mutations of the isoprenylation domain prevented the formation of infectious particles and increased cellular toxicity and liver damage. Furthermore, altering HDAg intracellular localization notably decreased viral replication, though liver damage remained unchanged versus normal HDAg distribution. In addition, a mutation in the nuclear export signal impaired the formation of infectious viral particles. These findings contribute valuable insights into the intricate mechanisms of HDV biology and have implications for therapeutic considerations.


Assuntos
Vírus Delta da Hepatite , RNA Viral , Animais , Camundongos , Antígenos da Hepatite delta/genética , Antígenos da Hepatite delta/metabolismo , RNA Viral/metabolismo , Camundongos Endogâmicos C57BL , Replicação Viral/genética , Processamento de Proteína Pós-Traducional , Fígado/metabolismo
2.
Nat Commun ; 15(1): 1876, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485924

RESUMO

Developing clinically predictive model systems for evaluating gene transfer and gene editing technologies has become increasingly important in the era of personalized medicine. Liver-directed gene therapies present a unique challenge due to the complexity of the human liver. In this work, we describe the application of whole human liver explants in an ex situ normothermic perfusion system to evaluate a set of fourteen natural and bioengineered adeno-associated viral (AAV) vectors directly in human liver, in the presence and absence of neutralizing human sera. Under non-neutralizing conditions, the recently developed AAV variants, AAV-SYD12 and AAV-LK03, emerged as the most functional variants in terms of cellular uptake and transgene expression. However, when assessed in the presence of human plasma containing anti-AAV neutralizing antibodies (NAbs), vectors of human origin, specifically those derived from AAV2/AAV3b, were extensively neutralized, whereas AAV8- derived variants performed efficiently. This study demonstrates the potential of using normothermic liver perfusion as a model for early-stage testing of liver-focused gene therapies. The results offer preliminary insights that could help inform the development of more effective translational strategies.


Assuntos
Dependovirus , Vetores Genéticos , Humanos , Vetores Genéticos/genética , Dependovirus/genética , Anticorpos Neutralizantes , Fígado , Perfusão
3.
EMBO Mol Med ; 16(1): 112-131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182795

RESUMO

The therapeutic use of adeno-associated viral vector (AAV)-mediated gene disruption using CRISPR-Cas9 is limited by potential off-target modifications and the risk of uncontrolled integration of vector genomes into CRISPR-mediated double-strand breaks. To address these concerns, we explored the use of AAV-delivered paired Staphylococcus aureus nickases (D10ASaCas9) to target the Hao1 gene for the treatment of primary hyperoxaluria type 1 (PH1). Our study demonstrated effective Hao1 gene disruption, a significant decrease in glycolate oxidase expression, and a therapeutic effect in PH1 mice. The assessment of undesired genetic modifications through CIRCLE-seq and CAST-Seq analyses revealed neither off-target activity nor chromosomal translocations. Importantly, the use of paired-D10ASaCas9 resulted in a significant reduction in AAV integration at the target site compared to SaCas9 nuclease. In addition, our study highlights the limitations of current analytical tools in characterizing modifications introduced by paired D10ASaCas9, necessitating the development of a custom pipeline for more accurate characterization. These results describe a positive advance towards a safe and effective potential long-term treatment for PH1 patients.


Assuntos
Sistemas CRISPR-Cas , Hiperoxalúria Primária , Humanos , Animais , Camundongos , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Edição de Genes , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/terapia
4.
Pharmaceutics ; 15(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896219

RESUMO

Gene therapy is a promising strategy to treat and cure most inherited metabolic liver disorders. Viral vectors such as those based on adeno-associated viruses (AAVs) and lentiviruses (LVs) are used as vehicles to deliver functional genes to affected hepatocytes. Adverse events associated with the use of high vector doses have motivated the use of small molecules as adjuvants to reduce the dose. In this study, we showed that a one-hour treatment with topoisomerase inhibitors (camptothecin and etoposide) prior to viral transduction is enough to increase AAV and LV reporter expression in non-dividing hepatic cells in culture. Topoisomerase inhibitors increased both integration-competent (ICLV) and integration-deficient (IDLV) LV-derived expression, with a much stronger increase in the IDLV transduction system. In agreement with that, topoisomerase inhibitors increased viral genome integration in both strains, with a greater impact on the IDLV strain, supporting the idea that topoisomerase inhibitors increased episomal DNA integration, especially when viral integrase activity is abolished. These effects correlated with an increase in the DNA damage response produced by the treatments. Our study highlights the need to monitor DNA damage and undesired integration of viral episomal DNAs into the host genome when studying chemical compounds that increase viral transduction.

5.
Cells ; 12(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37759522

RESUMO

Oxidative stress-induced myocardial apoptosis and necrosis are critically involved in ischemic infarction, and several sources of extracellular vesicles appear to be enriched in therapeutic activities. The central objective was to identify and validate the differential exosome miRNA repertoire in human cardiac progenitor cells (CPC). CPC exosomes were first analyzed by LC-MS/MS and compared by RNAseq with exomes of human mesenchymal stromal cells and human fibroblasts to define their differential exosome miRNA repertoire (exo-miRSEL). Proteomics demonstrated a highly significant representation of cardiovascular development functions and angiogenesis in CPC exosomes, and RNAseq analysis yielded about 350 different miRNAs; among the exo-miRSEL population, miR-935 was confirmed as the miRNA most significantly up-regulated; interestingly, miR-935 was also found to be preferentially expressed in mouse primary cardiac Bmi1+high CPC, a population highly enriched in progenitors. Furthermore, it was found that transfection of an miR-935 antagomiR combined with oxidative stress treatment provoked a significant increment both in apoptotic and necrotic populations, whereas transfection of a miR-935 mimic did not modify the response. Conclusion. miR-935 is a highly differentially expressed miRNA in exo-miRSEL, and its expression reduction promotes oxidative stress-associated apoptosis. MiR-935, together with other exosomal miRNA members, could counteract oxidative stress-related apoptosis, at least in CPC surroundings.

6.
Hum Gene Ther ; 34(17-18): 836-852, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672519

RESUMO

As the clinical experience in adeno-associated viral (AAV) vector-based gene therapies is expanding, the necessity to better understand and control the host immune responses is also increasing. Immunogenicity of AAV vectors in humans has been linked to several limitations of the platform, including lack of efficacy due to antibody-mediated neutralization, tissue inflammation, loss of transgene expression, and in some cases, complement activation and acute toxicities. Nevertheless, significant knowledge gaps remain in our understanding of the mechanisms of immune responses to AAV gene therapies, further hampered by the failure of preclinical animal models to recapitulate clinical findings. In this review, we focus on the current knowledge regarding immune responses, spanning from innate immunity to humoral and adaptive responses, triggered by AAV vectors and how they can be mitigated for safer, durable, and more effective gene therapies.


Assuntos
Ativação do Complemento , Imunidade Inata , Animais , Humanos , Terapia Genética , Inflamação , Modelos Animais
7.
Neurobiol Dis ; 183: 106166, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245833

RESUMO

Synucleinopathies are a group of neurodegenerative diseases without effective treatment characterized by the abnormal aggregation of alpha-synuclein (aSyn) protein. Changes in levels or in the amino acid sequence of aSyn (by duplication/triplication of the aSyn gene or point mutations in the encoding region) cause familial cases of synucleinopathies. However, the specific molecular mechanisms of aSyn-dependent toxicity remain unclear. Increased aSyn protein levels or pathological mutations may favor abnormal protein-protein interactions (PPIs) that could either promote neuronal death or belong to a coping response program against neurotoxicity. Therefore, the identification and modulation of aSyn-dependent PPIs can provide new therapeutic targets for these diseases. To identify aSyn-dependent PPIs we performed a proximity biotinylation assay based on the promiscuous biotinylase BioID2. When expressed as a fusion protein, BioID2 biotinylates by proximity stable and transient interacting partners, allowing their identification by streptavidin affinity purification and mass spectrometry. The aSyn interactome was analyzed using BioID2-tagged wild-type (WT) and pathological mutant E46K aSyn versions in HEK293 cells. We found the 14-3-3 epsilon isoform as a common protein interactor for WT and E46K aSyn. 14-3-3 epsilon correlates with aSyn protein levels in brain regions of a transgenic mouse model overexpressing WT human aSyn. Using a neuronal model in which aSyn cell-autonomous toxicity is quantitatively scored by longitudinal survival analysis, we found that stabilization of 14-3-3 protein-proteins interactions with Fusicoccin-A (FC-A) decreases aSyn-dependent toxicity. Furthermore, FC-A treatment protects dopaminergic neuronal somas in the substantia nigra of a Parkinson's disease mouse model. Based on these results, we propose that the stabilization of 14-3-3 epsilon interaction with aSyn might reduce aSyn toxicity, and highlight FC-A as a potential therapeutic compound for synucleinopathies.


Assuntos
Sinucleinopatias , alfa-Sinucleína , Camundongos , Humanos , Animais , alfa-Sinucleína/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Células HEK293 , Camundongos Transgênicos , Neurônios Dopaminérgicos/metabolismo
8.
JHEP Rep ; 5(5): 100713, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37096142

RESUMO

Background & Aims: Gene therapy using recombinant adeno-associated virus (rAAV) vector carrying multidrug resistance protein 3 (MDR3) coding sequence (AAV8-MDR3) represents a potential curative treatment for progressive familial intrahepatic cholestasis type 3 (PFIC3), which presents in early childhood. However, patients with the severest form of PFIC3 should receive treatment early after detection to prevent irreversible hepatic fibrosis leading ultimately to liver transplantation or death. This represents a challenge for rAAV-based gene therapy because therapeutic efficacy is expected to wane as rAAV genomes are lost owing to hepatocyte division, and the formation of AAV-specific neutralising antibodies precludes re-administration. Here, we tested a strategy of vector re-administration in infant PFIC3 mice with careful evaluation of its oncogenicity - a particular concern surrounding rAAV treatment. Methods: AAV8-MDR3 was re-administered to infant Abcb4 -/- mice 2 weeks after a first dose co-administered with tolerogenic nanoparticles carrying rapamycin (ImmTOR) given at 2 weeks of age. Eight months later, long-term therapeutic efficacy and safety were assessed with special attention paid to the potential oncogenicity of rAAV treatment. Results: Co-administration with ImmTOR mitigated the formation of rAAV-specific neutralising antibodies and enabled an efficacious second administration of AAV8-MDR3, resulting in stable correction of the disease phenotype, including a restoration of bile phospholipid content and healthy liver function, as well as the prevention of liver fibrosis, hepatosplenomegaly, and gallstones. Furthermore, efficacious repeat rAAV administration prevented the appearance of liver malignancies in an animal model highly prone to developing hepatocellular carcinoma. Conclusions: These outcomes provide strong evidence for rAAV redosing through co-administration with ImmTOR, as it resulted in a long-term therapeutic effect in a paediatric liver metabolic disorder, including the prevention of oncogenesis. Impact and implications: Redosing of gene therapy for inborn hepatobiliary disorders may be essential as effect wanes during hepatocyte division and renewal, particularly in paediatric patients, but the approach may carry long-term risks of liver cancer. Viral vectors carrying a therapeutic gene exerted a durable cure of progressive familial intrahepatic cholestasis type 3 in infant mice and reduced the risk of liver cancer only following a second administration.

9.
Hum Gene Ther ; 34(7-8): 273-288, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36927149

RESUMO

The liver is a prime target for in vivo gene therapies using recombinant adeno-associated viral vectors. Multiple clinical trials have been undertaken for this target in the past 15 years; however, we are still to see market approval of the first liver-targeted adeno-associated virus (AAV)-based gene therapy. Inefficient expression of the therapeutic transgene, vector-induced liver toxicity and capsid, and/or transgene-mediated immune responses reported at high vector doses are the main challenges to date. One of the contributing factors to the insufficient clinical outcomes, despite highly encouraging preclinical data, is the lack of robust, biologically and clinically predictive preclinical models. To this end, this study reports findings of a functional evaluation of 6 AAV vectors in 12 preclinical models of the human liver, with the aim to uncover which combination of models is the most relevant for the identification of AAV capsid variant for safe and efficient transgene delivery to primary human hepatocytes. The results, generated by studies in models ranging from immortalized cells, iPSC-derived and primary hepatocytes, and primary human hepatic organoids to in vivo models, increased our understanding of the strengths and weaknesses of each system. This should allow the development of novel gene therapies targeting the human liver.


Assuntos
Dependovirus , Fígado , Humanos , Dependovirus/genética , Fígado/metabolismo , Terapia Genética/métodos , Hepatócitos/metabolismo , Proteínas do Capsídeo/metabolismo , Tropismo , Vetores Genéticos/genética
10.
Mol Genet Metab Rep ; 35: 100967, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36967723

RESUMO

The deficiency of CITRIN, the liver mitochondrial aspartate-glutamate carrier (AGC), is the cause of four human clinical phenotypes, neonatal intrahepatic cholestasis caused by CITRIN deficiency (NICCD), silent period, failure to thrive and dyslipidemia caused by CITRIN deficiency (FTTDCD), and citrullinemia type II (CTLN2). Clinical symptoms can be traced back to disruption of the malate-aspartate shuttle due to the lack of citrin. A potential therapy for this condition is the expression of aralar, the AGC present in brain, to replace citrin. To explore this possibility we have first verified that the NADH/NAD+ ratio increases in hepatocytes from citrin(-/-) mice, and then found that exogenous aralar expression reversed the increase in NADH/NAD+ observed in these cells. Liver mitochondria from citrin (-/-) mice expressing liver specific transgenic aralar had a small (~ 4-6 nmoles x mg prot-1 x min-1) but consistent increase in malate aspartate shuttle (MAS) activity over that of citrin(-/-) mice. These results support the functional replacement between AGCs in the liver. To explore the significance of AGC replacement in human therapy we studied the relative levels of citrin and aralar in mouse and human liver through absolute quantification proteomics. We report that mouse liver has relatively high aralar levels (citrin/aralar molar ratio of 7.8), whereas human liver is virtually devoid of aralar (CITRIN/ARALAR ratio of 397). This large difference in endogenous aralar levels partly explains the high residual MAS activity in liver of citrin(-/-) mice and why they fail to recapitulate the human disease, but supports the benefit of increasing aralar expression to improve the redox balance capacity of human liver, as an effective therapy for CITRIN deficiency.

12.
Front Cell Infect Microbiol ; 13: 1110467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761900

RESUMO

Background: The main objective was to evaluate the efficacy of intranasal photodynamic therapy (PDT) in SARS-CoV-2 mildly symptomatic carriers on decreasing the infectivity period. SARS-CoV-2-specific immune-stimulating effects and safety were also analysed. Methods: We performed a randomized, placebo-controlled, clinical trial in a tertiary hospital (NCT05184205). Patients with a positive SARS-CoV-2 PCR in the last 48 hours were recruited and aleatorily assigned to PDT or placebo. Patients with pneumonia were excluded. Participants and investigators were masked to group assignment. The primary outcome was the reduction in in vitro infectivity of nasopharyngeal samples at days 3 and 7. Additional outcomes included safety assessment and quantification of humoral and T-cell immune-responses. Findings: Patients were recruited between December 2021 and February 2022. Most were previously healthy adults vaccinated against COVID-19 and most carried Omicron variant. 38 patients were assigned to placebo and 37 to PDT. Intranasal PDT reduced infectivity at day 3 post-treatment when compared to placebo with a ß-coefficient of -812.2 (CI95%= -478660 - -1.3, p<0.05) infectivity arbitrary units. The probability of becoming PCR negative (ct>34) at day 7 was higher on the PDT-group, with an OR of 0.15 (CI95%=0.04-0.58). There was a decay in anti-Spike titre and specific SARS-CoV-2 T cell immunity in the placebo group 10 and 20 weeks after infection, but not in the PDT-group. No serious adverse events were reported. Interpretation: Intranasal-PDT is safe in pauci-symptomatic COVID-19 patients, it reduces SARS-CoV-2 infectivity and decelerates the decline SARS-CoV-2 specific immune-responses.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Linfócitos T , Nariz
13.
Nat Rev Gastroenterol Hepatol ; 20(5): 288-305, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36646909

RESUMO

Gene therapy is poised to revolutionize modern medicine, with seemingly unlimited potential for treating and curing genetic disorders. For otherwise incurable indications, including most inherited metabolic liver disorders, gene therapy provides a realistic therapeutic option. In this Review, we discuss gene supplementation and gene editing involving the use of recombinant adeno-associated virus (rAAV) vectors for the treatment of inherited liver diseases, including updates on several ongoing clinical trials that are producing promising results. Clinical testing has been essential in highlighting many key translational challenges associated with this transformative therapy. In particular, the interaction of a patient's immune system with the vector raises issues of safety and the duration of treatment efficacy. Furthermore, several serious adverse events after the administration of high doses of rAAVs suggest greater involvement of innate immune responses and pre-existing hepatic conditions than initially anticipated. Finally, permanent modification of the host genome associated with rAAV genome integration and gene editing raises concerns about the risk of oncogenicity that require careful evaluation. We summarize the main progress, challenges and pathways forward for gene therapy for liver diseases.


Assuntos
Vetores Genéticos , Hepatopatias , Humanos , Terapia Genética/métodos , Hepatopatias/genética , Hepatopatias/terapia , Imunidade Inata
14.
Aging Cell ; 22(3): e13771, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36704839

RESUMO

The enormous societal impact of the ongoing COVID-19 pandemic has been particularly harsh for some social groups, such as the elderly. Recently, it has been suggested that senescent cells could play a central role in pathogenesis by exacerbating the pro-inflammatory immune response against SARS-CoV-2. Therefore, the selective clearance of senescent cells by senolytic drugs may be useful as a therapy to ameliorate the symptoms of COVID-19 in some cases. Using the established COVID-19 murine model K18-hACE2, we demonstrated that a combination of the senolytics dasatinib and quercetin (D/Q) significantly reduced SARS-CoV-2-related mortality, delayed its onset, and reduced the number of other clinical symptoms. The increase in senescent markers that we detected in the lungs in response to SARS-CoV-2 may be related to the post-COVID-19 sequelae described to date. These results place senescent cells as central targets for the treatment of COVID-19, and make D/Q a new and promising therapeutic tool.


Assuntos
COVID-19 , Quercetina , Camundongos , Humanos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , SARS-CoV-2 , Senescência Celular , Senoterapia , Pandemias
15.
Glia ; 71(3): 571-587, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36353934

RESUMO

Inflammation is a common feature in neurodegenerative diseases that contributes to neuronal loss. Previously, we demonstrated that the basal inflammatory tone differed between brain regions and, consequently, the reaction generated to a pro-inflammatory stimulus was different. In this study, we assessed the innate immune reaction in the midbrain and in the striatum using an experimental model of Parkinson's disease. An adeno-associated virus serotype 9 expressing the α-synuclein and mCherry genes or the mCherry gene was administered into the substantia nigra. Myeloid cells (CD11b+ ) and astrocytes (ACSA2+ ) were purified from the midbrain and striatum for bulk RNA sequencing. In the parkinsonian midbrain, CD11b+ cells presented a unique anti-inflammatory transcriptomic profile that differed from degenerative microglia signatures described in experimental models for other neurodegenerative conditions. By contrast, striatal CD11b+ cells showed a pro-inflammatory state and were similar to disease-associated microglia. In the midbrain, a prominent increase of infiltrated monocytes/macrophages was observed and, together with microglia, participated actively in the phagocytosis of dopaminergic neuronal bodies. Although striatal microglia presented a phagocytic transcriptomic profile, morphology and cell density was preserved and no active phagocytosis was detected. Interestingly, astrocytes presented a pro-inflammatory fingerprint in the midbrain and a low number of differentially displayed transcripts in the striatum. During α-synuclein-dependent degeneration, microglia and astrocytes experience context-dependent activation states with a different contribution to the inflammatory reaction. Our results point towards the relevance of selecting appropriate cell targets to design neuroprotective strategies aimed to modulate the innate immune system during the active phase of dopaminergic degeneration.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Microglia/metabolismo , Astrócitos/metabolismo , Mesencéfalo/metabolismo , Inflamação
16.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499263

RESUMO

Citrullinemia type I (CTLN1) is a rare autosomal recessive disorder caused by mutations in the gene encoding argininosuccinate synthetase 1 (ASS1) that catalyzes the third step of the urea cycle. CTLN1 patients suffer from impaired elimination of nitrogen, which leads to neurotoxic levels of circulating ammonia and urea cycle byproducts that may cause severe metabolic encephalopathy, death or irreversible brain damage. Standard of care (SOC) of CTLN1 consists of daily nitrogen-scavenger administration, but patients remain at risk of life-threatening decompensations. We evaluated the therapeutic efficacy of a recombinant adeno-associated viral vector carrying the ASS1 gene under the control of a liver-specific promoter (VTX-804). When administered to three-week-old CTLN1 mice, all the animals receiving VTX-804 in combination with SOC gained body weight normally, presented with a normalization of ammonia and reduction of citrulline levels in circulation, and 100% survived for 7 months. Similar to what has been observed in CTLN1 patients, CTLN1 mice showed several behavioral abnormalities such as anxiety, reduced welfare and impairment of innate behavior. Importantly, all clinical alterations were notably improved after treatment with VTX-804. This study demonstrates the potential of VTX-804 gene therapy for future clinical translation to CTLN1 patients.


Assuntos
Amônia , Citrulinemia , Camundongos , Animais , Nitrogênio , Citrulinemia/genética , Citrulinemia/terapia , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Terapia Genética , Ureia/metabolismo
17.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36232593

RESUMO

Type I interferons (IFN), including IFNß, play a protective role in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Type I IFNs are induced by the stimulation of innate signaling, including via cytoplasmic RIG-I-like receptors. In the present study, we investigated the potential effect of a chimeric protein containing the key domain of RIG-I signaling in the production of CNS endogenous IFNß and asked whether this would exert a therapeutic effect against EAE. We intrathecally administered an adeno-associated virus vector (AAV) encoding a fusion protein comprising RIG-I 2CARD domains (C) and the first 200 amino acids of mitochondrial antiviral-signaling protein (MAVS) (M) (AAV-CM). In vivo imaging in IFNß/luciferase reporter mice revealed that a single intrathecal injection of AAV-CM resulted in dose-dependent and sustained IFNß expression within the CNS. IFNß expression was significantly increased for 7 days. Immunofluorescent staining in IFNß-YFP reporter mice revealed extraparenchymal CD45+ cells, choroid plexus, and astrocytes as sources of IFNß. Moreover, intrathecal administration of AAV-CM at the onset of EAE induced the suppression of EAE, which was IFN-I-dependent. These findings suggest that accessing the signaling pathway downstream of RIG-I represents a promising therapeutic strategy for inflammatory CNS diseases, such as MS.


Assuntos
Encefalomielite Autoimune Experimental , Interferon Tipo I , Aminoácidos , Animais , Antivirais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Interferon Tipo I/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Camundongos , Proteínas Recombinantes de Fusão , Transdução de Sinais
18.
J Photochem Photobiol ; 11: 100138, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35958025

RESUMO

SARS-CoV-2 is responsible for the COVID-19 pandemic, which has caused almost 570 million infections and over six million deaths worldwide. To help curb its spread, solutions using ultraviolet light (UV) for quick virus inactivation inside buildings without human intervention could be very useful to reduce chances of contagion. The UV dose must be sufficient to inactivate the virus considering the different materials in the room, but it should not be too high, not to degrade the environment. In the present study, we have analyzed the ability of a 254 nm wavelength UV-C lamp to inactivate dried samples of SARS-CoV-2 exposed at a distance of two meters, simulating a full-scale scenario. Our results showed that virus inactivation was extremely efficient in most tested materials, which included plastic, metal, wood, and textile, with a UV-C exposure of only 42 s (equivalent to 10 mJ/cm2). However, porous materials like medium density fibreboard, were hard to decontaminate, indicating that they should be avoided in hospital rooms and public places.

19.
Mol Ther Methods Clin Dev ; 26: 98-106, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35795774

RESUMO

Wilson's disease (WD) is an inherited disorder of copper metabolism associated with mutations in ATP7B gene. We have shown that the administration of an adeno-associated vector (AAV) encoding a mini version of human ATP7B (VTX-801) provides long-term correction of copper metabolism in a murine WD model. In preparation of a future clinical trial, we have evaluated by positron emission tomography (PET) the value of 64Cu biodistribution, excretion pattern, and blood kinetics as pharmacodynamic biomarkers of VTX-801 effects. Six-week-old WD mice were injected intravenously with increasing doses of VTX-801 and 3 weeks or 3 months later with [64Cu]CuCl2. Untreated WD and wild-type (WT) mice were included as controls. Control WD mice showed increased hepatic 64Cu retention, reduced fecal excretion of the radiotracer, and altered 64Cu blood kinetics (BK) compared with WT mice. VTX-801 treatment in WD mice resulted in a significant reduction of hepatic 64Cu accumulation, the restoration of fecal 64Cu excretion, and the correction of 64Cu BK. This study showed that VTX-801 restores physiological copper metabolism in WD mice, confirming the mechanism of action of VTX-801, and demonstrated the translational potential of [64Cu]CuCl2-PET to explore VTX-801 pharmacodynamics in a minimally invasive and sensitive manner in WD patients.

20.
Biomedicines ; 10(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35740260

RESUMO

Cholestatic diseases can be caused by the dysfunction of transporters involved in hepatobiliary circulation. Although pharmacological treatments constitute the current standard of care for these diseases, none are curative, with liver transplantation being the only long-term solution for severe cholestasis, albeit with many disadvantages. Liver-directed gene therapy has shown promising results in clinical trials for genetic diseases, and it could constitute a potential new therapeutic approach for cholestatic diseases. Many preclinical gene therapy studies have shown positive results in animal models of both acquired and genetic cholestasis. The delivery of genes that reduce apoptosis or fibrosis or improve bile flow has shown therapeutic effects in rodents in which cholestasis was induced by drugs or bile duct ligation. Most studies targeting inherited cholestasis, such as progressive familial intrahepatic cholestasis (PFIC), have focused on supplementing a correct version of a mutated gene to the liver using viral or non-viral vectors in order to achieve expression of the therapeutic protein. These strategies have generated promising results in treating PFIC3 in mouse models of the disease. However, important challenges remain in translating this therapy to the clinic, as well as in developing gene therapy strategies for other types of acquired and genetic cholestasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...